Microrna-221 and Microrna-222 Modulate Differentiation and Maturation of Skeletal Muscle Cells
نویسندگان
چکیده
BACKGROUND MicroRNAs (miRNAs) are a class of small non-coding RNAs that have recently emerged as important regulators of gene expression. They negatively regulate gene expression post-transcriptionally by translational repression and target mRNA degradation. miRNAs have been shown to play crucial roles in muscle development and in regulation of muscle cell proliferation and differentiation. METHODOLOGY/PRINCIPAL FINDINGS By comparing miRNA expression profiling of proliferating myoblasts versus differentiated myotubes, a number of modulated miRNAs, not previously implicated in regulation of myogenic differentiation, were identified. Among these, miR-221 and miR-222 were strongly down-regulated upon differentiation of both primary and established myogenic cells. Conversely, miR-221 and miR-222 expression was restored in post-mitotic, terminally differentiated myotubes subjected to Src tyrosine kinase activation. By the use of specific inhibitors we provide evidence that expression of miR-221 and miR-222 is under the control of the Ras-MAPK pathway. Both in myoblasts and in myotubes, levels of the cell cycle inhibitor p27 inversely correlated with miR-221 and miR-222 expression, and indeed we show that p27 mRNA is a direct target of these miRNAs in myogenic cells. Ectopic expression of miR-221 and miR-222 in myoblasts undergoing differentiation induced a delay in withdrawal from the cell cycle and in myogenin expression, followed by inhibition of sarcomeric protein accumulation. When miR-221 and miR-222 were expressed in myotubes undergoing maturation, a profound alteration of myofibrillar organization was observed. CONCLUSIONS/SIGNIFICANCE miR-221 and miR-222 have been found to be modulated during myogenesis and to play a role both in the progression from myoblasts to myocytes and in the achievement of the fully differentiated phenotype. Identification of miRNAs modulating muscle gene expression is crucial for the understanding of the circuits controlling skeletal muscle differentiation and maintenance.
منابع مشابه
Downregulation of miR-221/222 by a microRNA sponge promotes apoptosis in oral squamous cell carcinoma cells through upregulation of PTEN
MicroRNA-221 and microRNA-222 (miR-221/222) have been identified as oncogenes and confirmed to be overexpressed in various types of cancer. However, the regulation mechanism of miR-221/222 in oral squamous cell carcinoma (OSCC) remains to be fully elucidated. Previously, an miR-221/222 sponge was successfully constructed and its effect on the downregulation of miR-221/222 expression was investi...
متن کاملmiRNA-221 and miRNA-222 synergistically function to promote vascular calcification
Vascular calcification shares many similarities with skeletal mineralisation and involves the phenotypic trans-differentiation of vascular smooth muscle cells (VSMCs) to osteoblastic cells within a calcified environment. Various microRNAs (miRs) are known to regulate cell differentiation; however, their role in mediating VSMC calcification is not fully understood. miR-microarray analysis reveal...
متن کاملmicroRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression.
OBJECTIVE Inflammatory stimuli released into atherosclerotic plaque microenvironment regulate vessel formation by modulating gene expression and translation. microRNAs are a class of short noncoding RNAs, acting as posttranscriptional regulators of protein-coding genes involved in various biological processes, including vascular cell biology. Among them, microRNA-221/222 (miR-221/222) seem to n...
متن کاملThe effect of microRNA-125 on the adhesion molecule expression of integrin beta2 and adhesive determination of endothelial cells isolated from human aorta to monocyte
Background: The immune-mediated responses in vascular cells may include the increased expression of endothelial adhesion molecules, leukocyte rolling and infiltration, cellular lipid dysregulation and vascular smooth muscle cells (VSMCs) differentiation. Investigating the cellular and molecular events involved in the rolling process is useful for treatment or prevention of the vessel stenosis es...
متن کاملcAMP-Epac Pathway Stimulation Modulate Connexin-43 and MicroRNA-21 Expression in Glioma Cells
Introduction: Malignant astrocytic gliomas are the most common and lethal brain malignancies due to their refractory to the current therapies. Nowadays, molecular targeted therapy has attracted great attention in treatment of glioma. Connexin 43 (Cx43) and micro ribonucleic acid- 21(miR-21) are among molecules that are involved in glioma development and progression. These molecules showed...
متن کامل